Impact of Data Processing and Antenna Frequency on Spatial Structure Modelling of GPR Data
نویسندگان
چکیده
Over the last few years high-resolution geophysical techniques, in particular ground-penetrating radar (GPR), have been used in agricultural applications for assessing soil water content variation in a non-invasive way. However, the wide use of GPR is greatly limited by the data processing complexity. In this paper, a quantitative analysis of GPR data is proposed. The data were collected with 250, 600 and 1600 MHz antennas in a gravelly soil located in south-eastern Italy. The objectives were: (1) to investigate the impact of data processing on radar signals; (2) to select a quick, efficient and error-effective data processing for detecting subsurface features; (3) to examine the response of GPR as a function of operating frequency, by using statistical and geostatistical techniques. Six data processing sequences with an increasing level of complexity were applied. The results showed that the type and range of spatial structures of GPR data did not depend on data processing at a given frequency. It was also evident that the noise tended to decrease with the complexity of processing, then the most error-effective procedure was selected. The results highlight the critical importance of the antenna frequency and of the spatial scale of soil/subsoil processes being investigated.
منابع مشابه
Proposing New Methods to Enhance the Low-Resolution Simulated GPR Responses in the Frequency and Wavelet Domains
To date, a number of numerical methods, including the popular Finite-Difference Time Domain (FDTD) technique, have been proposed to simulate Ground-Penetrating Radar (GPR) responses. Despite having a number of advantages, the finite-difference method also has pitfalls such as being very time consuming in simulating the most common case of media with high dielectric permittivity, causing the for...
متن کاملبررسی های باستان شناسی منطقه تپه حصار دامغان با استفاده از مدل سازی پیشرو و وارون داده های رادار نفوذی به زمین
Ground penetrating radar (GPR) method is a non-destructive geophysical method that is used to detect subsurface heterogeneities and also recognition of various shallow targets. In present research, forward and inverse modeling of GPR data applied for archeological study has been made. The study area is Tappeh Hissar, Damghan, in which GPR data along several survey lines have been acquired using...
متن کاملComparison of Pca and Ica Based Clutter Reduction in Gpr Systems for Anti- Personal Landmine Detection
This paper presents statistical signal processing approaches for clutter reduction in Stepped-Frequency Ground Penetrating Radar (SF-GPR) data. In particular, we suggest clutter/signal separation techniques based on principal and independent component analysis (PCA/ICA). The approaches are successfully evaluated and compared on real SF-GPR time-series. Field-test data are acquired using a monos...
متن کاملProcessing a multifold ground penetration radar data using common-diffraction-surface stack method
Recently, the non-destructive methods have become of interest to the scientists in various fields. One of these method is Ground Penetration Radar (GPR), which can provide a valuable information from underground structures in a friendly environment and cost-effective way. To increase the signal-to-noise (S/N) ratio of the GPR data, multi-fold acquisition is performed, and the Common-Mid-Points ...
متن کاملDesign And Optimization Of Uwb Antenna For Air Coupled Gpr Applications
DESIGN AND OPTIMIZATION OF UWB ANTENNA FOR AIR COUPLED GPR APPLICATIONS Report Title This thesis presents a novel antenna structure that satisfies the challenging requirements of an air coupled high speed ground penetrating radar (GPR). The desired GPR system is to achieve high spatial resolution and accurate inspection results while scanning at relatively high speed for highway pavement and br...
متن کامل